Stable and accurate wave-propagation in discontinuous media
نویسندگان
چکیده
A time stable discretization is derived for the second-order wave equation with discontinuous coefficients. The discontinuity corresponds to inhomogeneity in the underlying medium and is treated by splitting the domain. Each (homogeneous) sub domain is discretized using narrow-diagonal summation by parts operators and, then, patched to its neighbors by using a penalty method, leading to fully explicit time integration. This discretization yields a time stable and efficient scheme. The analysis is verified by numerical simulations in one-dimension using high-order finite difference discretizations, and in three-dimensions using an unstructured finite volume discretization. 2008 Elsevier Inc. All rights reserved.
منابع مشابه
کاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملHigh order finite difference methods for wave propagation in discontinuous media
Strictly stable high order finite difference approximations are derived for the second order wave equation with discontinuous coefficients. The discontinuity is treated by splitting the domain at the discontinuities in a multi block fashion. Each sub domain is discretized with compact second derivative summation by parts (SBP) operators and the blocks are patched together to a global domain by ...
متن کاملHigh Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation
This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in ‘x’ by discontinuous approximations. This method combines mainly two key ideas which are based on th...
متن کاملFinite Difference and Discontinuous Galerkin Methods for Wave Equations
Wang, S. 2017. Finite Difference and Discontinuous Galerkin Methods for Wave Equations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1522. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9927-3. Wave propagation problems can be modeled by partial differential equations. In this thesis, we study wave propagation in fluids and...
متن کاملAxisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008